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Abstract— We present an optimization-based approach for
autonomous parking. Building on recent advances in the area
of optimization-based collision avoidance (OBCA), we show
that the autonomous parking problem can be formulated as a
smooth non-convex optimization problem. Unfortunately, such
problems are numerically challenging to solve in general and
require appropriate warm-starting. To address this limitation,
we propose a novel algorithm called Hierarchical OBCA (H-
OBCA). The main idea is to first use a generic path planner,
such as Hybrid A?, to compute a coarse trajectory using a
simplified vehicle model and by discretizing the state-input
space. This path is subsequently used to warm-start the OBCA
algorithm, which optimizes and smoothens the coarse path
using a full vehicle model and continuous optimization. Our
studies indicate that the proposed H-OBCA parking algo-
rithm combines Hybrid A?’s global path planning capability
with OBCA’s ability to generate smooth, collision-free, and
dynamically feasible paths. Extensive simulations suggest that
the proposed H-OBCA algorithm is robust and admits real-
time parking for autonomous vehicles. Sample code is pro-
vided at https://github.com/XiaojingGeorgeZhang/
H-OBCA.

I. INTRODUCTION

Parking a car is a difficult task and can be stressful for
a human driver. Today, (semi-)autonomous parking systems
are commercially available from several manufacturers. More
recently, automated valet parking has attracted the industry’s
attention, where a car autonomously drives to a parking spot
and parks itself [1].

Despite extensive research, the problem of generating
obstacle-free trajectories for vehicles in a cluttered parking
environment remains a difficult task, especially in tight
environments. The main challenges arise from the non-linear
and non-holonomic vehicle dynamics and the non-convexity
of the free space. Indeed, it has been shown that the task
of finding a collision-free path is, in general, NP-hard [2].
Therefore, an ideal all-purpose parking algorithm does not
exist, and commercial parking assistance systems are tailored
towards “standard” parking scenarios [3].

Recently, optimization-based path planning algorithms,
such as Model Predictive Control (MPC), have attracted sig-
nificant attention, with application ranging from (unmanned)
aircraft to robots to autonomous cars [4]–[19]. This can
be attributed to the increase in computational resources,
the availability of robust numerical algorithms for solving
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optimization problems, as well as MPC’s ability to systemat-
ically encode system dynamics and safety constraints inside
its formulation. The main challenge in optimization-based
approaches is that the obstacle avoidance constraints induce
a non-convex optimization problem, often in the form of
integer variables, rendering the resulting optimization prob-
lem computationally difficult to solve [20]. By introducing
auxiliary decision variables, obstacle avoidance constraints
can be reformulated as a set of smooth constraints, allowing
the use of mature gradient- and Hessian-based numerical
solvers [7], [17]. Unfortunately, it has been observed that,
due to the non-holonomic dynamics and the non-convexity
of the obstacle-free space, the solution quality of these
optimization problems in parking problems critically depend
on the initial guess provided to the numerical solver, see e.g.,
[11, Section III.C] and [17, Section 6.3].

In this paper, we propose a novel method for overcoming
this issue. In particular, the contribution of this paper can be
summarized as follows:
• We propose a hierarchical parking algorithm that com-

bines the classical Hybrid A? path planner [21] with
the optimization-based collision avoidance (OBCA) al-
gorithm of [17]. Specifically, on the higher level, we use
Hybrid A? and a simplified vehicle model to quickly
generate a (coarse) path that approximately satisfies the
vehicle dynamics. This path is subsequently passed onto
the lower level to initialize the OBCA algorithm, which
uses a full vehicle model to generate a high-quality
collision-free parking path.

• We demonstrate through extensive numerical simula-
tions that the proposed hierarchical parking algorithm
is robust and computationally efficient. Furthermore, we
show empirically that the obtained path is smooth, and
can be accurately tracked by a simple low level path
following controller.

The source code of the proposed parking algorithm is pro-
vided at https://github.com/XiaojingGeorgeZhang/
H-OBCA. In the interest of space, we refer the reader to
[22]–[24] for an overview of existing methods for generating
collision-free trajectories.

II. TECHNICAL BACKGROUND

A. Obstacle and Car Modeling

Let x = (X,Y, ϕ, v) ∈ R4 be the state of the vehicle,
where (X,Y ) is the center of the rear axis, ϕ is the heading
angle, and v is the longitudinal velocity. For a given state x,
we denote by E(x) ⊂ R2 the “space” occupied by the car.
Throughout this paper, we model the car to be parked as a

2018 IEEE Conference on Decision and Control (CDC)
Miami Beach, FL, USA, Dec. 17-19, 2018

978-1-5386-1395-5/18/$31.00 ©2018 IEEE 4327



rotated and translated rectangle, i.e.,

E(x) = R(x)B + t(x), B := {y : Gy ≤ g}, (1)

where B ⊂ R2 is the “initial” rectangle, R : R4 → R2×2 is
a rotation matrix, and t : R4 → R2 is the translation vector.
The matrices (G, g) define our initial rectangle B and are
assumed known.

We consider M ≥ 1 obstacles O(1),O(2), . . . ,O(M) ⊂ R2

of the form

O(m) = {y ∈ R2 : A(m)y ≤ b(m)}, (2)

where A(m) ∈ Rlm×2, b(m) ∈ Rlm are known matrices,
and lm is the number of faces of the mth obstacle. Repre-
sentation (2) is fairly generic since most (also non-convex)
obstacles can be approximated as the union of polytopes1.
Throughout, we assume that the sets B,O(1),O(2), . . . ,O(M)

have non-empty relative interior.
The control objective is to move (“park”) the ego car from

an initial state x0 to a final state xF , while avoiding the
obstacles (2). Formally, the collision avoidance condition can
be expressed as

E(x) ∩O(m) = ∅, ∀m = 1, . . . ,M. (3)

It is well-known that the collision avoidance constraint (3)
is non-convex and non-differentiable in general, rendering it
difficult to use in optimization-based methods such as Model
Predictive Control [7], [25]. In the following, we review a
recently proposed method for remodeling (3) that preserves
both continuity and differentiability, and hence allows the use
of mature gradient- and Hessian-based numerical algorithms.

B. Smooth Reformulation of (3)

A popular way of analytically formulating collision avoid-
ance is based on the notion of signed distance [25]

sd(E(x),O) := dist(E(x),O)− pen(E(x),O), (4)

where, to simplify the forthcoming discussion, the super-
script “(m)” in O(m) has been omitted. The terms dist(·, ·)
and pen(·, ·) in (4) denote the distance and penetration
function, respectively, and are defined as

dist(E(x),O) := min
t
{‖t‖ : (E(x) + t) ∩O 6= ∅}, (5a)

pen(E(x),O) := min
t
{‖t‖ : (E(x) + t) ∩O = ∅}, (5b)

where ‖ · ‖ is the Euclidean distance. It follows that sd(·, ·)
between two sets is positive if the two sets do not intersect,
and negative if they intersect. Hence, (3) is equivalent to
requiring sd(E(x),O) > 0. Unfortunately, directly enforcing
sd(E(x),O) > 0 as a constraint inside an optimization
problem is generally difficult since (i) it is non-convex and
non-differentiable in general [25], and (ii) an explicit rep-
resentation of sd(·, ·) is required for optimization algorithms
to be numerically efficient.

1We refer the interested reader to [17] for obstacles that can be described
as general convex sets.

Recently, the authors of [17] have shown that, by
introducing additional decision variables, the condition
sd(E(x),O) > 0 can be reformulated as follows:

Theorem 1 ([17, Theorem 2]): Assume that the obstacles
and the car are given as in (2) and (1), respectively. Then,
for any d ∈ R, we have:

sd(E(x),O) > d (6)

⇐⇒ ∃λ ≥ 0, µ ≥ 0: − g>µ+ (At(x)− b)>λ > d,

G>µ+R(x)>A>λ = 0, ‖A>λ‖ = 1.
Since E(x) ∩ O = ∅ is equivalent to sd(E(x),O) > 0,
collision avoidance is ensured by setting d = 0 in (6).
We point out that Theorem 1 provides a smooth and exact
characterization of the signed distance. Intuitively speaking,
any (µ, λ) satisfying the right-hand-side of (6) provides a
certificate for satisfying the condition sd(E(x),O) > d. We
will see in the next section how Theorem 1 allows us to
encode the collision avoidance condition (3) as a set of
smooth constraints.

III. AUTONOMOUS PARKING

In this section, we describe the proposed parking al-
gorithm. We begin by introducing the system model in
Section III-A, and formulating the parking problem as a
constrained optimal control problem in Section III-B. Finally,
Section III-C presents the proposed parking algorithm.

A. System Dynamics, Constraints, and Cost

We model the vehicle dynamics using a standard kinematic
bicycle model of the form ẋ = f(x, u), which is suited
for vehicles at low speeds [26]. The state x is given as in
Section II-A, and the input u := (δ, a) consists of the steering
angle δ and the longitudinal acceleration a. The continuous
time system is discretized using a second-order Runge-Kutta
method such that xk+1 = xk + τ f(xk + 0.5τf(xk, uk), uk),
where τ > 0 is the sampling time, and xk, uk are the
state and input at time step k. Our control objective is to
park the car as quickly as possible, while minimizing the
control effort. Therefore, we consider a cost of the form
J(u, τ) := κτ +

∑N−1
k=0 uTkQuk + ∆uTkQ∆∆uk, where

u := [u0, . . . , uN−1], Q and Q∆ are positive semi-definite
weighting matrices, ∆uk := (uk − uk−1)/τ and κ ≥ 0 is
a weight that trades off control effort and minimum-time.
Motivated by [27], we do not assume that τ is fixed but
rather that it is a decision variable over which we optimize.
This is motivated by the fact that the final time is given
by N τ ; hence, minimizing τ also minimizes the execution
time N τ . Furthermore, optimizing over τ has the additional
benefit that the maneuver duration does not need to be fixed
a priori, which in practice helps avoid infeasibility issues that
are caused by short maneuver lengths.

B. Optimization-based Collision Avoidance (OBCA)

Given an initial state xS and target state xF , the parking
problem consists of navigating the vehicle from xS to xF ,
while avoiding the obstacles O(1),O(2), . . . ,O(M) and mini-
mizing the control input. By combining (1), (2) and (6) with
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the system dynamcics, the parking problem can therefore be
formulated as the following optimal control problem

min
τ,x,u,λ,µ

κτ +

N∑
k=0

u>k Quk + ∆u>k Q∆∆uk

s.t. x0 = xS , xN+1 = xF ,
xk+1 = xk + τ f(xk + 0.5τf(xk, uk), uk),
h(xk, uk) ≤ 0,

−g>µ(m)
k + (A(m) t(xk)− b(m))>λ

(m)
k > 0,

G>µ
(m)
k +R(xk)>A(m)>λ

(m)
k = 0,

‖A(m)>λ
(m)
k ‖ = 1, λ

(m)
k ≥ 0, µ

(m)
k ≥ 0,

∀k = 0, . . . , N, ∀m = 1, . . . ,M,
(7)

where λ(m)
k and µ(m)

k are the (auxiliary) variables associated
with the obstacle O(m) at step k, and λ and µ are the
collection of all λ(m)

k and µ(m)
k , respectively. The constraint

h(·, ·) ≤ 0 encodes input and state constraints as detailed
later in Section IV, and collision avoidance is ensured by
means of the last five constraints, see Theorem 1. We
refer to problem (7) as OBCA, optimization-based collision
avoidance. Notice that, by virtue of Theorem 1, OBCA (7)
exactly encodes the obstacle avoidance constraint (3), i.e., no
approximations are involved. If the function h(·, ·) is smooth,
then OBCA (7) is a smooth optimization problem that can be
solved with existing off-the-shelf gradient- or Hessian-based
algorithms.

C. Hierarchical Parking Algorithm (H-OBCA)

Recall that (7) is a non-convex optimization problem,
and hence computationally intractable to solve in general.
In practice, one has to satisfy oneself with a local optima
that, for instance, satisfies the KKT conditions [28], [29].
Furthermore, it is well-known that those solutions critically
depend on the initial guess (also known as “warm-starting
point”) that is provided to the solvers, and that different
initial guesses can lead to different (local) optima. Unfortu-
nately, computing a good initial guess is often difficult, espe-
cially in parking applications where the initial guess should
approximately satisfy the non-holonomic vehicle dynamics
[17].

In the following, we propose a hierarchical parking algo-
rithm where we first use the Hybrid A? algorithm to compute
a coarse parking trajectory, which we then use to warm-start
OBCA (7)2. The individual steps are described in detail next.

(1) Hybrid A?: Hybrid A? is a kinodynamic path planning
algorithm that is able to generate paths in clustered envi-
ronments using a simplified vehicle model [21]. It is a tree
search algorithm that consists of two main steps: (i) First,
starting from the “best” expanded node, measured in terms of
a heuristic function and a user-defined cost function, Hybrid
A? uses a simplified vehicle model to create candidate nodes
(ii) Second, all collision-free candidate nodes are connected
to the goal node using analytical node expansion. If the path
is collision-free, Hybrid A? terminates; otherwise it goes to
step (i). In the following, we briefly outline the idea of the

2Instead of Hybrid A?, other methods such as RRT∗ could also be used.

heuristic function, and also describe steps (i) and (ii) is more
detail. The interested reader is referred to [21] for a complete
description of Hybrid A?.

Heuristic Function and Cost Function: The “best” ex-
panded node chosen in step (i) depends on a heuristic
function and a user-defined cost function. Typically, the cost
function penalizes of path length, number of switchback
points and steering angle. The heuristic function is used
to speed up computation and guides the node expansion
direction. In our paper, the heuristic function is the solution
of the A? algorithm, which is a method for computing
shortest path problems on grids [30], [31]. Together with
the cost function, the solution of the A? algorithm guides
Hybrid A? by choosing the “best” expanded node in step
(i).

Step (i): Hybrid A? uses a simplified kinematic bicycle
model that neglects the velocity state v and the acceleration
input a. These two quantities are replaced with a discrete
input that decides if the car moves forward or backwards.
Additionally, the steering angle is discretized. From a given
start node, which is determined by the heuristic function
and the user-defined cost function, these inputs are used to
generate candidate nodes. If multiple candidate nodes enter
the same grid cell, only the one with the best (user-defined)
cost is kept (“pruning”).

Step (ii): For all newly expanded nodes, the Hybrid A?

algorithm performs a so-called “analytical node expansion”
step, where all possible Reeds-Shepp paths [32] are gen-
erated between each node and the goal node. If any of
those paths is collision-free, then a feasible path has been
found; the node is not further expanded, and the algorithm
is stopped3. Otherwise, if none of the Reeds-Shepp paths is
collision-free, the Hybrid A? will proceed to step (i).

In the following, we denote the path returned by the
Hybrid A? algorithm as {XHA

k , Y HA
k , ϕHA

k }k.
(2) Warm-Starting OBCA: We use the solution

{XHA
k , Y HA

k , ϕHA
k }k provided by the Hybrid A? algorithm

from step (1) to warm-start OBCA (7) as follows: First, we
down-sample the path provided by Hybrid A? to obtain the
horizon N . Then, using an estimate for the sampling time
τws, we compute a smooth velocity profile {vws

k }k from
the Hybrid A? path that satisfies the acceleration limits4.
Given {vws

k }k and {ϕHA
k }k, we extract the inputs profiles

{aws
k , δ

ws
k }k. This allows us to use {XHA

k , Y HA
k , ϕHA

k , vws
k }k to

warm-start the states x, {δws
k , a

ws
k }k to warm-start the inputs

u, and τws to warm-start the sampling time τ . Finally,
the auxiliary variables λ

(m)
k , µ

(m)
k in (7) are initialized

as the solution of the following optimization problems
(λm,ws
k , µm,ws

k ) := maxλ,µ{−g>µ + (A(m)t(XHA
k , Y HA

k ) −
b(m))>λ : G>µ + R(ϕHA

k )>(A(m))>λ = 0, ‖(A(m))>λ‖ =
1, λ ≥ 0, µ ≥ 0}.

3A Reeds-Shepp path is a valid path for the kinematic bicycle model
[32].

4Finding a good warm-start τws is challenging and highly problem
dependent. In our numerical simulations, values between 0.5–1 s have
provided good results.
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(3) Solving OBCA: Finally, the OBCA problem (7) is
solved with the initial guesses from step (2) using an off-the-
shelf nonlinear solver. We point out that the warm-start is, in
general, infeasible and does not satisfy the system dynamics.

Since the three steps above induce a hierarchical control
structure, we call the resulting parking algorithm Hierarchi-
cal Optimization-Based Collision Avoidance (H-OBCA). Its
main steps are summarized in Algorithm 1.

Algorithm 1 H-OBCA for Autonomous Parking

Input: xS , xF , τws, vehicle shape B, obstacles {O(i)}i
Output: Optimal trajectory x? and input sequence u?

1: Compute {XHA
k , Y HA

k , ϕHA
k }k using Hybrid A?.

2: Compute initial guesses {vws
k , a

ws
k , δ

ws
k , λ

m,ws
k , µm,ws

k }k,m.
3: Solve OBCA (7) with the initial guesses
{XHA

k , Y HA
k , ϕHA

k , vws
k , a

ws
k , δ

ws
k , λ

m,ws
k , µm,ws

k , τws}k,m.

IV. SIMULATION RESULTS

In this section, we provide simulation results of two
common parking scenarios, reverse parking and parallel
parking, see Figure 1. Sample code is provided at https:
//github.com/XiaojingGeorgeZhang/H-OBCA.

A. Simulation Setup

We model the vehicle as a rectangle of size 4.7 × 2 m
whose orientation is determined by the car’s heading angle.
The wheelbase is assumed to be L = 2.7 m. Steering angle
is limited between δ ∈ [−0.6, 0.6] rad (approximately ±34
degrees), the acceleration between a ∈ [−0.4, 0.4] m/s2.
Furthermore, rate constraints on the steering angle are con-
sidered δ̇ ∈ [−0.6, 0.6] rad/s, and the car’s velocity is limited
to lie between v ∈ [−1, 2] m/s. Finally, the sampling time for
reverse and parallel parking is initialized with τws = 0.6 s
and τws = 0.9 s, respectively, and allowed to vary by ±20%.

Our Hybrid A? implementation uses a coarse state and
input grid to speed up computation time. The state grid
size is 0.3 m in both X and Y dimension, and 5◦ in the
heading angle ϕ. The steering input is discretized using five
points, and we use a motion resolution of 0.1 m. Collision
avoidance is ensured by checking the ego car’s shape E(x)
with the obstacles’ boundaries, that are discretized with a
resolution of 0.1 m. As a cost function, we penalize the path
length, the reverse movement, number of switchbacks, curve
tightness and jerk of the path. As a heuristic, and to speed
up computation, we use the collision-free shortest path from
each grid point to the final state, computed using the standard
A? algorithm (see [21] for details on heuristic functions).

The parking spot in the reverse parking scenario (Fig. 1,
top) is assumed 2.6 m wide and 5.2 m long. The road where
the car can maneuver in is 6 m wide. The parking spot in the
parallel parking scenario (Fig. 1, bottom) is 2.5 m deep and
6 m long. The space for maneuvering is 6 m wide. Clearly, for
both scenarios, the obstacles admit polytopic representations
of the form (2). All subsequent simulations were performed
on a 2013 MacBook Pro with an Intel i7 processor clocked

at 2.4GHz. The simulations were implemented in the Julia
programming language. The OBCA problem (7) is formu-
lated with the modeling toolbox JuMP and solved with the
nonlinear solver IPOPT [28].

B. Results

1) Computation Time: To evaluate the proposed H-OBCA
algorithm, we consider 57 parallel parking scenarios and 57
reverse parking scenarios. In each scenario, the end position
is fixed at (XF , YF , ϕF , vF ) = (0, 1.3, π/2, 0) (reverse
parking) and (XF , YF , ϕF , vF ) = (−1.35, 4, 0, 0) (parallel
parking). The starting positions, on the other hand, are
obtained by gridding the maneuvering space equally between
X ∈ [−9, 9] and Y ∈ [6.5, 9.5], with nineteen points in
the X-direction and three points in the Y -direction. For all
initial conditions, the vehicle is at standstill and oriented to
the right, i.e., vS = ϕS = 0.

The computation time of H-OBCA is reported in Fig. 1
for all scenarios. They are further broken down in Table I
with respect to step 1 of Algorithm 1 (Hybrid A?) and step 3
of Algorithm 1 (OBCA). Step 2 is neglected since it takes
roughly 0.1 s.
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Fig. 1: Computation time of proposed H-OBCA algorithm
for reverse (top) and parallel parking (bottom).

2) Driveability of Generated Path: In this section, we
examine the quality of the paths generated by H-OBCA in
terms of how much time it takes for a simple path follower to
follow the computed path, and what the maximum tracking
error is. These quantities are evaluated using a simple path
follower that consists of a P-controller in the longitudinal
direction, and an LQR-controller in the lateral direction.
This is a common approach in vehicle path following [26].
Table II reports the maneuvering time and the maximum
tracking error of the proposed H-OBCA algorithm.
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TABLE I: Computation time of Hybrid A? (step 1), OBCA
(step 2) and H-OBCA (Algorithm 1).

min max mean

Reverse Parking
Hybrid A? 0.1496 s 4.2263 s 0.9276 s
OBCA 0.2814 s 3.2961 s 0.8743 s
Total (H-OBCA) 0.4481 s 4.7011 s 1.8019 s

Parallel Parking
Hybrid A? 0.1437 s 2.1362 s 0.4603 s
OBCA 0.3137 s 4.0192 s 1.2475 s
Total (H-OBCA) 0.4645 s 4.3262 s 1.7078 s

TABLE II: Maneuvering time and maximum tracking error
of path generated by H-OBCA for reverse parking (top) and
parallel parking (bottom).

min max mean

Reverse Parking
maneuver time H-OBCA 14.0500 s 34.8500 s 24.1930 s
max tracking error H-OBCA 0.0380 m 0.0880 m 0.0578 m

Parallel Parking
maneuver time H-OBCA 17.4500 s 67.3500 s 39.5675 s
max tracking error H-OBCA 0.0500 m 0.1328 m 0.0742 m

C. Discussion and Comparison

1) Computation Time and Success Rate of H-OBCA: We
see from Fig. 1 that the proposed H-OBCA algorithm is able
to park the car from all 57 starting points. Moreover, we see
from Table I that H-OBCA is computationally efficient, with
an average computation time of around 1.8 s, and a maximum
computation time of 4.7 s. Furthermore, we see from Table II
that the path provided by H-OBCA can be easily tracked,
with a maximum tracking error of 8.8 cm (reverse parking)
and 13.3 cm (parallel parking). This information can be used,
for example, to enforce a minimum distance between the
obstacle and the car when solving OBCA in (7). Finally,
we see from Table II that parallel parking generally requires
longer execution time (average 39.6 s) than reverse parking
(average 24.2 s). This is due to the fact that the paths in
parallel parking are generally longer since the car needs to
first drive to the right before it can back into the parking
lot. We close this section by pointing out that the numerical
results suggest that the proposed H-OBCA algorithm is
robust, real-time feasible, and able to generate easy-to-track
trajectories.

2) Comparison with OBCA: In this section, we examine
how the proposed H-OBCA algorithm compares to a “naive”
implementation of OBCA, where problem (7) is solved with
a simple (or no) initial guess. In particular, we consider the
following two scenarios: (A) No initial guess is provided to
OBCA (7); (B) A simple path connecting the start and end
position that neglects the obstacles is provided to OBCA (7)
as an initial guess. Table III reports the success rate of finding

a feasible solution to (7), as well as the computation time for
solving (7). Clearly, a naive implementation of OBCA not
only results in very low success rates, but also leads to much
higher computation time. Indeed, comparing Table III with
Table I, we see that H-OBCA has a maximum computation
time of 4.7 s, while a naive OBCA has a computation time
of 13.8 s. Table III suggests that the proposed hierarchical H-
OBCA algorithm vastly outperforms a naive implementation
of OBCA, while underscoring the importance of selecting
a good warm-start when it comes to solving non-convex
optimization problems.

TABLE III: Success rate and computation time of OBCA
with no warm-start (A) and a linear interpolation as warm-
start (B).

succ. rate max comp. time mean comp. time

Reverse Parking
(A): no warm-start 43.9% 13.4529 s 8.1932 s
(B): lin. interpolation 84.2% 13.8684 s 6.1525 s
H-OBCA 100% 4.7011 s 1.8019 s

Parallel Parking
(A): no warm-start 45.6% 13.2161 s 5.3833 s
(B): lin. interpolation 29.8% 13.6204 s 5.8313 s
H-OBCA 100% 4.3262 s 1.7078 s

3) Comparison with Hybrid A?: In this section, we com-
pare the hierarchical H-OBCA algorithm with the Hybrid A?

algorithm. We begin by pointing out that the Hybrid A?

algorithm has, obviously, a lower computation time than H-
OBCA (Table I), since it is an integral part of H-OBCA.

To examine the quality of the paths generated by Hybrid
A?, Table IV reports the maneuver time and maximum
tracking error along the path when tracked with the afore-
mentioned low-level path following controller. Comparing
Table IV with Table II, we see that the paths computed by
H-OBCA can be tracked more accurately, although not by
much. However, when it comes to maneuver time, we see that
paths generated by Hybrid A? require more time to track than
the paths generated by H-OBCA. This is mainly due to two
reasons: First, the paths generated by H-OBCA satisfy the
kinodynamic constraints since the vehicle model is explicitly
incorporated in (7). Second, the Hybrid A? algorithm does
not explicitly take into account the rate constraints in the
steering angle, allowing the car to take “aggressive” curves,
see Fig. 2 for an example. To make these curves, the vehicle
needs to drive slowly, which explains the longer maneuver
times. However, it turns out that by applying a different
velocity profile for the low-level controller, one would be
able to track the Hybrid A? path quicker. Unfortunately,
such a controller would result in a large tracking error which
could possibly lead to collisions. Furthermore, we see from
Fig. 2 that H-OBCA is able to “correct” paths obtained
by the Hybrid A? algorithm, and generate smoother and
more natural paths. We summarize the comparison section
by pointing out that the hierarchical H-OBCA algorithm is
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Fig. 2: Paths generated by Hybrid A? (red) and H-OBCA
(dashed-blue).

able to generate paths that are smoother and easier to track
than those of Hybrid A?.

TABLE IV: Maneuvering time and path following quality
of Hybrid A? for reverse parking (top) and parallel parking
(bottom).

min max mean

Reverse Parking
Maneuver time Hybrid A? 36.8500 s 75.9000 s 55.2404 s
Max tracking error Hybrid A? 0.0051 0.1195 0.0692

Parallel Parking
Maneuver time Hybrid A? 86.4588 s 131.9000 s 51.1000 s
Max tracking error Hybrid A? 0.0367 0.1445 0.0860

V. CONCLUSION

In this paper, we presented a novel hierarchical controller
called H-OBCA for autonomous parking that effectively
combines Hybrid A?’s global path planning capability with
OBCA’s ability to generate smooth, collision-free, and dy-
namically feasible paths. Our studies suggest that the perfor-
mance of Hybrid A? and OBCA combined is significantly
greater than that of the individual parts. Extensive numerical
simulations have demonstrated that the proposed H-OBCA
controller is both robust and computationally efficient, with
computation times of less than 5 s. Finally, we have shown
that the paths generated by H-OBCA are smooth and can be
tracked accurately by a low-level path following controller.
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